| Table II. Desiccant Efficiency in the Drying | |--| |--| | | of Various Amines | | | | | | | |--|---|---|---|--|--|--|--| | | residual water content, c ppm | | | | | | | | desiccant | Et,Nd | NH,(CH,),NH, | | | | | | | KOH powder
4A sieves
3A sieves
CaH,
Na
BaO
CaC,
CaO
Al ₂ O, | 37 (23) ^f 33 (28) ^h 34 68 (34) ^f 83 89 (53) ^f 98 (80) ^f 165 (56) ^f 223 (223) ^f | 750#
<25
<25
150i
<25
50
<25i | 1370 (3700) ^g <25 <25 500 ⁱ 150 1100 <25 ⁱ | | | | | | ailica gel
CaSO ₄ | 451 | | >2500 | | | | | ## Table II. Efficiency of Desiccants in the Drying^a of | | residual solvent water content, ppm | | | | | | | |--------------------------------|-------------------------------------|------|------|---------------------|--|--|--| | desiccant | 6 h | 24 h | 72 h | other
conditions | | | | | 3A molecular sieves | 500 | 167 | 98 | 1.5¢ | | | | | P ₂ O ₅ | 879 | 105 | | 2 d | | | | | CaH ₂ | 641 | 227 | 102 | 94 d | | | | | 4A molecular sieves | 454 | 134 | 108 | | | | | | KOH (powdered) | 1360 | 1110 | | 303 ₫ | | | | | B ₂ O ₃ | | | | 890° | | | | | BaO | 2060 | 1520 | 1140 | | | | | | CaO | 2090 | | | | | | | | Al ₂ O ₃ | 1970 | | | | | | | | CaSO ₄ | 2310 | 2030 | 1420 | | | | | | K ₂ CO ₃ | 2500 | | | | | | | ^a Static drying modes unless otherwise specified. ^b Desiccant loading 5% w/v; initial water content 2860 ppm (0.286% w/w). ^c Sequentially dried sample, 72 h. ^d Distilled Sample. ^e Stirring for 24 h followed by distillation. Table IV. Efficiency of Desiccants in the Dryinga of | Acetone- | | | | | | | | | |---|---------------------|---------------------|-------------------------|---------------------------------------|--|--|--|--| | | | ater (| | | | | | | | desiccant | 6 h | 24 h | 72 h | other
conditions | | | | | | B ₂ O ₃ | | | | 18°,d
47°,e
107/ | | | | | | 3A molecular sieves
CuSO ₄ (anhydrous) | 115
1920 | 152
972 | 322 ^g
579 | 322 ^h
1700 ^h | | | | | | 4A molecular sieves
CaSO ₄
BaO | 331
1590
1910 | 887
1600
1870 | 1720 | | | | | | | P ₂ O ₅
K ₂ CO ₃ | j
2057 | 2250 | | 1970/ | | | | | Static drying modes unless specified otherwise. ^b Desiccant loading 5% w/v; initial water content 2710 ppm (0.271% w/w), unless specified otherwise. ^c Initial water contant 2890 ppm (0.289% w/w). ^d Stirred, distilled, and sequentially dried, 24 h. ^c Stirred for 24 h and distilled. ^f Dried for 24 h and then distilled. ^g Contamination (2%) by mestly oxide. ^h Fractionated sample. ^f Contamination (12%) by mestlyl oxide. ^f Brown-black solu- Table V. Comparison of Desiceant Drying Efficiency for Dioxane and Acetonitrile* | | residual solvent water
content, ppm | | | | |---|--|--------------|--|--| | desiccant | dioxane | acetonitrile | | | | CaSO,b | 240 | 180 | | | | CaSO, b
CaCl ₂ ^b | 290 | d | | | | 3A molecular sieve | 19 | 52 | | | | 4A molecular sieve | 30 | 450 | | | *Initial water content = 2500 ppm; drying time 72 h. Activation temperature: b = 225 °C. c = 350 °C. Drying temperature 27-30 °C. c = 62Cl₂ induces a base-catalysed frittium scchange with acetonizile which precludes determination; desiccant loading = 5% Table II. Desiccant Efficiency in Drying^{a,b} of | 1,2-E | hanedioi | |---|--| | desiccant | residual water content, ppm | | 3A sieves (bead) 3A sieves (powder) 4A sieves (powder) Mg8O 4 CaC, B,O, BaO CaO distillation ^h benzene azeotrope Mg Al | 1900 (1200,d 540°) 360/ 1900 (2070)d 3600 990d k 1080 65h.i (76)h.j 150 (76)h.j | Al a Static drying modes unless specified otherwise. b Water content assayed by the Karl Fischer method. b Water content assayed by the Karl Fischer method. c Dessicant loading 5% w/v with a drying period of 72 h culess specified otherwise; initial water content 2700 unless specified otherwise; initial water content 2700 unless specified otherwise; initial water content 2700 unless specified otherwise; initial water content 2700 ppm. d 168-h drying period. f Analysis was performed after settling of desiccant, ~ 6 h. Table III. Efficiency of Desiccants in the Drying of Me₂SOb | Agent | Capacitya | Speed ^b | Comments | |--------------------------------|----------------------|--------------------|--| | CaSO 4 | 1/2 H ₂ O | Very fast (1) | Sold commercially as "Drierite" with or without a color indicator; very efficient. When dry the indicator (CoCl ₂) is blue, but turns pink as it takes on H ₂ O (capacity CoCl ₂ ·6H ₂ O); use ful in temperature range -50° to +86°. Some organic solvent leach out, or change the color of CoCl ₂ (acetone, alcohols, pyridine, etc.). | | CaCl ₂ | 6 H ₂ O | Very fast (2) | Not very efficient; use only for hydrocarbons and alkyl halides (forms solvates, complexes, or reacts with many N and O compounds). | | MgSO4 | 7 H ₂ O | Fast (4) | Excellent general agent; very inert but may be slightly acidi (avoid with very acid-sensitive compounds). May be soluble in some organic solvents. | | Molecular
Sieve 4A | High | Fast (30) | Very efficient; predrying with a more common agent recommended (see below for details on molecular sieves). Sieve 3A also excellent. | | Na₂SO₄ ' | 10 H ₂ O | Slow (290) | Very mild, inefficient, slow, inexpensive, high capacity; good for gross predrying, but do not warm the solution. | | K ₂ CO ₃ | 2 H ₂ O | Fast | Good for esters, nitriles, ketones
and especially alcohols; do not
use with acidic compounds. | | NaOH, KOH | Very high | Fast | Powerful, but used only with in-
ert solutions in which agent is
insoluble; especially good for
amines. | | H ₂ SO ₄ | Very high | Very fast | Very efficient, but use limited
to saturated or aromatic hydro-
carbons or halides (will remove
olefins and other "basic" | Table I. Desiccant Efficiency in the Drying ab of a Pyridine Serie compounds). | desiccant | pyridine | 2-methyl-
pyridine | 2,4,6-trimethy | | |--|--|-----------------------------------|--|-----------------------------------| | CaH, CaC, BaO 4A sieves 3A sieves benzene azeotrope KOH powder Na CaO silica gel | 39 (14)* 44 (10)* 101 106 (0.3)* 117 125 152 388 962 926 | 84
71
27
55
40
176 | pyridine 248 (138) ^e 519 360 268 (126) 200 (128) 207 325 | 132
8
33
47
390
27 | ^a Static drying modes unless specified otherwise. ^b Water content assayed by the radiotracer technique. ^c Desiccant loading 5% w/v; initial water content 2500 ppm (0.25% w/w). ^d 24-h drying times unless specified otherwise. ^e 168-h drying time. ^f Sequentially dried sample, 24 h. Table L Desiccant Efficiency in Drying^{a,b} of Some Common Lower Alcohols^c | | residual water content, ppm | | | | | | | |---------------------------------|-----------------------------|--------------------------------|-----------------|------------------------|--|--|--| | desiccant | methanol ^d | ethanol ^e 2-butanol | | tert-butyl alcohol | | | | | 3A sieves (bead) | 95 | 99 | 645 (9)h | 428 (160) ^t | | | | | 3A sieves (powder) ^j | 940 | 18 | 14 | 13 | | | | | Mg/I, k " | 97 (12)1 | 50 (53)m | | | | | | | CaH, | 125 | 99 | 17 ⁿ | 406 (20)° | | | | | Na ^{p *} | | 18007 | 2400" | 406 (10) | | | | | Na/dicarboxylic acid ester | | 92" | 36" | 400 (10) | | | | | 4A sieves (bead) | 440 | 401 | ••• | 406 | | | | | 5A sieves (bead) | 475 | 875 | | | | | | | CaC. | 490 | 333 (199) ^r | 409 | 430" (662)° | | | | | BaO' | 1000 | | 400 | 400 (002) | | | | | Ca | 1000 | i | | 860 | | | | | K,CO, | • | i | | 750 | | | | | CaO | ž. | - | | 770 | | | | | KOH powder | - | ï | | 110 | | | | | on exchange resin | | | | 640 | | | | a Static drying modes unless specified otherwise. b Water content assayed by the Karl Fischer method o' Desiccant loading 5% w/v with a drying period of 24 h unless specified otherwise. Initial water content 1010 ppm. Initial water content 1500 ppm. Initial water content 1600 ppm. Initial water content 1670 ppm. distilled sample. Weight of magnesium 3% w/v. Distilled sample. Initial water content 1670 ppm. distilled sample. Weight of sodium 3% w/v. Bee ref 32. Ratio of sodium to 2-butyl succinate for 2-BuOH and to diethyl phthalate for ethanol in accord with general practice (see ref 7c), i.e.; Na, 0.3 mol L⁻¹; dicarboxylic acid ester, 0.14 mol L⁻¹. Stirred sample. No apparent drying. | 1 60 | ie ili. Milicienc, | y or Desicean | e in the prime | OI MICZOO | | | | | | | | |--|--------------------|---------------|-------------------|-------------------------|------------------------------------|----------------|----------------|------------------|------------------|-----------------|--------------------| | | | re | sidual solvent wa | ter content, ppm III. I | Dependence of D | rying Efficien | ncy on Desiccs | nt Loading in | the Drying of | Grossly Wet D | iethyl Ether | | desiccant | 6 h | 24 h | 72 h | • | desiccant
loading | | residual | solvent water co | intent. nom | | | | 4A molecular sieves | 978
1050 | 471
448 | 332
269 | desiccant | % w/v | 5 min | 15 min | 30 min | 60 min | 360 min | capacity⁴
% w/w | | 3A molecular sieves
none | 1000 | 440 | 205 | CaSO ₄ | 10 ^b
20 ^b | 6400 | 11400
3800 | 9200
2100 | 10200 | 10700 | 2.8-3.9
4.5 | | P ₂ O ₅
B ₂ O ₃
CaH ₂ | 1560 | | 1820 | CaCl ₂ | 20°
5° | 9700 | 7500 | 5800
2100 | 2100 | 850 | 3.1
19.6 | | BaO
CaO | 1450
2060 | 1330 | 1770
1740 | | 10°
20° | 2100 | 2400
1400 | 2100
900 | 1900 | 390 | 10.1 | | Al ₂ O ₃
K ₀ CO ₂ | 1840
2280 | 1900
2200 | 1920 | e Initial water contr | ent = 14 700 ppm; | drying temper | ature = 22 °C. | Activation temp | perature: b = 22 | 0 °C. °= 350 °C | | Initial water content = 14 700 ppm; drying temperature = 22 water absorbed per unit of desiccant expressed as a percentage. 2130 2140