Table II. Desiccant Efficiency in the Drying
--

	of Various Amines						
	residual water content, c ppm						
desiccant	Et,Nd	NH,(CH,),NH,					
KOH powder 4A sieves 3A sieves CaH, Na BaO CaC, CaO Al ₂ O,	37 (23) ^f 33 (28) ^h 34 68 (34) ^f 83 89 (53) ^f 98 (80) ^f 165 (56) ^f 223 (223) ^f	750# <25 <25 150i <25 50 <25i	1370 (3700) ^g <25 <25 500 ⁱ 150 1100 <25 ⁱ				
ailica gel CaSO ₄	451		>2500				

Table II. Efficiency of Desiccants in the Drying^a of

	residual solvent water content, ppm						
desiccant	6 h	24 h	72 h	other conditions			
3A molecular sieves	500	167	98	1.5¢			
P ₂ O ₅	879	105		2 d			
CaH ₂	641	227	102	94 d			
4A molecular sieves	454	134	108				
KOH (powdered)	1360	1110		303 ₫			
B ₂ O ₃				890°			
BaO	2060	1520	1140				
CaO	2090						
Al ₂ O ₃	1970						
CaSO ₄	2310	2030	1420				
K ₂ CO ₃	2500						

^a Static drying modes unless otherwise specified. ^b Desiccant loading 5% w/v; initial water content 2860 ppm (0.286% w/w). ^c Sequentially dried sample, 72 h. ^d Distilled Sample. ^e Stirring for 24 h followed by distillation.

Table IV. Efficiency of Desiccants in the Dryinga of

Acetone-								
		ater (
desiccant	6 h	24 h	72 h	other conditions				
B ₂ O ₃				18°,d 47°,e 107/				
3A molecular sieves CuSO ₄ (anhydrous)	115 1920	152 972	322 ^g 579	322 ^h 1700 ^h				
4A molecular sieves CaSO ₄ BaO	331 1590 1910	887 1600 1870	1720					
P ₂ O ₅ K ₂ CO ₃	j 2057	2250		1970/				

Static drying modes unless specified otherwise. ^b Desiccant loading 5% w/v; initial water content 2710 ppm (0.271% w/w), unless specified otherwise. ^c Initial water contant 2890 ppm (0.289% w/w). ^d Stirred, distilled, and sequentially dried, 24 h. ^c Stirred for 24 h and distilled. ^f Dried for 24 h and then distilled. ^g Contamination (2%) by mestly oxide. ^h Fractionated sample. ^f Contamination (12%) by mestlyl oxide. ^f Brown-black solu-

Table V. Comparison of Desiceant Drying Efficiency for Dioxane and Acetonitrile*

	residual solvent water content, ppm			
desiccant	dioxane	acetonitrile		
CaSO,b	240	180		
CaSO, b CaCl ₂ ^b	290	d		
3A molecular sieve	19	52		
4A molecular sieve	30	450		

*Initial water content = 2500 ppm; drying time 72 h. Activation temperature: b = 225 °C. c = 350 °C. Drying temperature 27-30 °C. c = 62Cl₂ induces a base-catalysed frittium scchange with acetonizile which precludes determination; desiccant loading = 5%

Table II. Desiccant Efficiency in Drying^{a,b} of

1,2-E	hanedioi
desiccant	residual water content, ppm
3A sieves (bead) 3A sieves (powder) 4A sieves (powder) Mg8O 4 CaC, B,O, BaO CaO distillation ^h benzene azeotrope Mg Al	1900 (1200,d 540°) 360/ 1900 (2070)d 3600 990d k 1080 65h.i (76)h.j 150 (76)h.j

Al

a Static drying modes unless specified otherwise.

b Water content assayed by the Karl Fischer method.

b Water content assayed by the Karl Fischer method.

c Dessicant loading 5% w/v with a drying period of 72 h

culess specified otherwise; initial water content 2700

unless specified otherwise; initial water content 2700

unless specified otherwise; initial water content 2700

unless specified otherwise; initial water content 2700

ppm. d 168-h drying period.

f Analysis was performed after settling of desiccant, ~ 6 h.

Table III. Efficiency of Desiccants in the Drying of Me₂SOb

Agent	Capacitya	Speed ^b	Comments
CaSO 4	1/2 H ₂ O	Very fast (1)	Sold commercially as "Drierite" with or without a color indicator; very efficient. When dry the indicator (CoCl ₂) is blue, but turns pink as it takes on H ₂ O (capacity CoCl ₂ ·6H ₂ O); use ful in temperature range -50° to +86°. Some organic solvent leach out, or change the color of CoCl ₂ (acetone, alcohols, pyridine, etc.).
CaCl ₂	6 H ₂ O	Very fast (2)	Not very efficient; use only for hydrocarbons and alkyl halides (forms solvates, complexes, or reacts with many N and O compounds).
MgSO4	7 H ₂ O	Fast (4)	Excellent general agent; very inert but may be slightly acidi (avoid with very acid-sensitive compounds). May be soluble in some organic solvents.
Molecular Sieve 4A	High	Fast (30)	Very efficient; predrying with a more common agent recommended (see below for details on molecular sieves). Sieve 3A also excellent.
Na₂SO₄ '	10 H ₂ O	Slow (290)	Very mild, inefficient, slow, inexpensive, high capacity; good for gross predrying, but do not warm the solution.
K ₂ CO ₃	2 H ₂ O	Fast	Good for esters, nitriles, ketones and especially alcohols; do not use with acidic compounds.
NaOH, KOH	Very high	Fast	Powerful, but used only with in- ert solutions in which agent is insoluble; especially good for amines.
H ₂ SO ₄	Very high	Very fast	Very efficient, but use limited to saturated or aromatic hydro- carbons or halides (will remove olefins and other "basic"

Table I. Desiccant Efficiency in the Drying ab of a Pyridine Serie

compounds).

desiccant	pyridine	2-methyl- pyridine	2,4,6-trimethy	
CaH, CaC, BaO 4A sieves 3A sieves benzene azeotrope KOH powder Na CaO silica gel	39 (14)* 44 (10)* 101 106 (0.3)* 117 125 152 388 962 926	84 71 27 55 40 176	pyridine 248 (138) ^e 519 360 268 (126) 200 (128) 207 325	132 8 33 47 390 27

^a Static drying modes unless specified otherwise. ^b Water content assayed by the radiotracer technique. ^c Desiccant loading 5% w/v; initial water content 2500 ppm (0.25% w/w). ^d 24-h drying times unless specified otherwise. ^e 168-h drying time. ^f Sequentially dried sample, 24 h.

Table L Desiccant Efficiency in Drying^{a,b} of Some Common Lower Alcohols^c

	residual water content, ppm						
desiccant	methanol ^d	ethanol ^e 2-butanol		tert-butyl alcohol			
3A sieves (bead)	95	99	645 (9)h	428 (160) ^t			
3A sieves (powder) ^j	940	18	14	13			
Mg/I, k "	97 (12)1	50 (53)m					
CaH,	125	99	17 ⁿ	406 (20)°			
Na ^{p *}		18007	2400"	406 (10)			
Na/dicarboxylic acid ester		92"	36"	400 (10)			
4A sieves (bead)	440	401	•••	406			
5A sieves (bead)	475	875					
CaC.	490	333 (199) ^r	409	430" (662)°			
BaO'	1000		400	400 (002)			
Ca	1000	i		860			
K,CO,	•	i		750			
CaO	ž.	-		770			
KOH powder	-	ï		110			
on exchange resin				640			

a Static drying modes unless specified otherwise. b Water content assayed by the Karl Fischer method o' Desiccant loading 5% w/v with a drying period of 24 h unless specified otherwise. Initial water content 1010 ppm. Initial water content 1500 ppm. Initial water content 1600 ppm. Initial water content 1670 ppm. distilled sample. Weight of magnesium 3% w/v. Distilled sample. Initial water content 1670 ppm. distilled sample. Weight of sodium 3% w/v. Bee ref 32. Ratio of sodium to 2-butyl succinate for 2-BuOH and to diethyl phthalate for ethanol in accord with general practice (see ref 7c), i.e.; Na, 0.3 mol L⁻¹; dicarboxylic acid ester, 0.14 mol L⁻¹. Stirred sample. No apparent drying.

1 60	ie ili. Milicienc,	y or Desicean	e in the prime	OI MICZOO							
		re	sidual solvent wa	ter content, ppm III. I	Dependence of D	rying Efficien	ncy on Desiccs	nt Loading in	the Drying of	Grossly Wet D	iethyl Ether
desiccant	6 h	24 h	72 h	•	desiccant loading		residual	solvent water co	intent. nom		
4A molecular sieves	978 1050	471 448	332 269	desiccant	% w/v	5 min	15 min	30 min	60 min	360 min	capacity⁴ % w/w
3A molecular sieves none	1000	440	205	CaSO ₄	10 ^b 20 ^b	6400	11400 3800	9200 2100	10200	10700	2.8-3.9 4.5
P ₂ O ₅ B ₂ O ₃ CaH ₂	1560		1820	CaCl ₂	20° 5°	9700	7500	5800 2100	2100	850	3.1 19.6
BaO CaO	1450 2060	1330	1770 1740		10° 20°	2100	2400 1400	2100 900	1900	390	10.1
Al ₂ O ₃ K ₀ CO ₂	1840 2280	1900 2200	1920	e Initial water contr	ent = 14 700 ppm;	drying temper	ature = 22 °C.	Activation temp	perature: b = 22	0 °C. °= 350 °C	

Initial water content = 14 700 ppm; drying temperature = 22 water absorbed per unit of desiccant expressed as a percentage.

2130 2140